

STIMULATION BY MANGANESE(II) SULPHATE OF A cAMP-DEPENDENT PROTEIN KINASE FROM *ZEA MAYS* SEEDLINGS

BORIS JANISTYN

Labor für naturwissenschaftliche und gentechnische Forschung, Höfener Straße 51, D-7815 Kirchzarten, F.R.G.

(Revised received 25 February 1988)

Key Word Index—*Zea mays*; Gramineae; maize; cAMP; manganese(II)-sulphate; protein-kinase.

Abstract—A cAMP-dependent protein kinase (M_r 36 000) was isolated from *Zea mays* seedlings. The enzyme is stimulated six-fold against the control by 0.9 mM $MnSO_4$.

INTRODUCTION

As described earlier [1], the highest cAMP dependent protein kinase activity of a purified maize coleoptile homogenate by electrophoresis was in the 36 000 region. The concentration of $MnSO_4$ in these assay mixtures was less than 0.1 mM; $MgCl_2$ 5 mM and EDTA was 1 mM and the $[\gamma-^{32}P]$ -ATP activity was 5 μ Ci (185 kBq).

Further investigations surprisingly showed a direct requirement of this cAMP-dependent protein kinase for Mn^{2+} . This is the first time that a requirement for a cAMP dependent protein kinase for $MnSO_4$, as shown in Fig. 1, has been described for a homogenate of a higher plant material.

The conditions for the kinase assays were the same as described in [1] with the following modifications. The buffer used contained 30 mM Tris-HCl, 5 mM $MgCl_2$ and 0.1 mM ascorbic acid (pH 6, 8). The concentration of $MnSO_4$ in the final volume of the reaction mixture of 80 μ l increased from 0 to 2.0 mM.

The dependence of the cAMP stimulation on the $MnSO_4$ concentration showed a rather sharp optimum at ca 0.9 mM, with activity falling off rapidly at higher levels of $MnSO_4$. The cAMP dependent protein kinase activity is more than twice of that found earlier [1]. When $MnSO_4$ was replaced by $NiSO_4$, $CoSO_4$ or $FeSO_4$ in the reaction mixture cAMP had only little effect on the protein kinase activity. In the absence of added cAMP, $MnSO_4$ was slightly stimulatory at about 0.8 mM. Other cyclic nucleotides as cUMP, cCMP, cIMP and cGMP showed no stimulatory effects.

In 1969 a very similar requirement for a cAMP dependent protein kinase for $MnCl_2$ was reported in *Escherichia coli* [2]. Whereas the concentrations of cAMP and Mn^{2+} were in the same order of magnitude to stimulate the protein kinase, no $MgCl_2$ was required because in this case Mn^{2+} substituted Mg^{2+} . In respect to the discussions about the nature and character of the cAMP dependent protein kinases in higher plants (3), the cAMP- Mn^{2+} dependent protein kinases may be evolutionarily conserved. Another Mn^{2+} -stimulated protein kinase has recently been described in *Pisum sativum* [4].

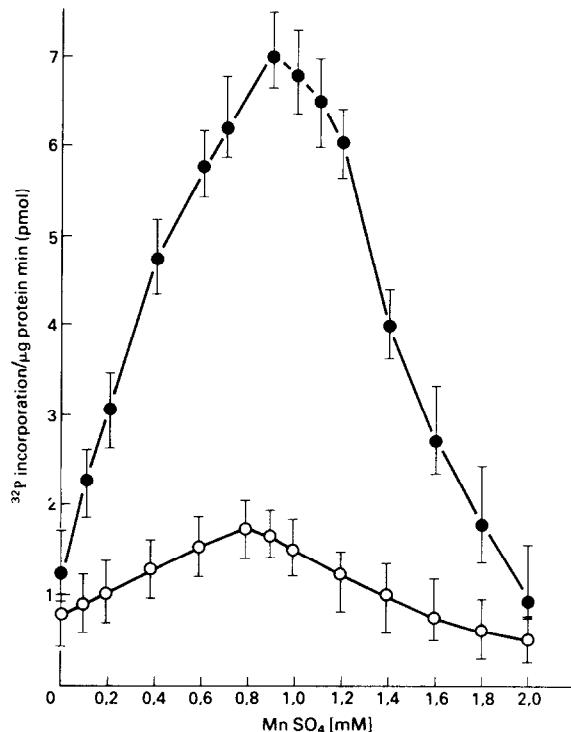


Fig. 1. Effect of $MnSO_4$ on histone II-A phosphorylation catalysed by an isolated protein kinase from maize coleoptile homogenate in the presence (●) or absence (○) of cAMP (6×10^{-6} M). Further information is given in the text. I indicates the SE for three fold measured samples.

Acknowledgements—I am obliged to Mrs K. Glombik for her help with the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft.

REFERENCES

1. Janistyn, B. (1986), *Z. Naturforsch.* **41c**, 579.
2. Kuo, J. F. and Greengard, P. (1969), *J. Biol. Chem.* **244**, 3417.
3. Newton, R. P. and Brown, E. G. (1986), in: *Receptors in Plants and Slime Moulds* (Chadwick, C. M. and Garrod, D. R., eds) pp. 115-153. Cambridge University Press, Cambridge.
4. Chiataste, D., Leri, M., Sgorbati, S. and Sparroli, E. (1987) *Plant Sci.* **53**, 271.